GUIDELINES ON THE INSTALLATION OF THE INLAND AUTOMATIC IDENTIFICATION SYSTEM

INLAND AIS STATION

Draft Edition 2025/1

PRELIMINARY REMARKS

In this document, the following wordings apply:

- The word "shall" indicates the requirements set out in ES-TRIN, in the ADN¹, or in ES-RIS when enforced by ES-TRIN.
- The term "is strongly recommended" indicates a provision which is essential but currently not set out in ES-TRIN.
- The word "should" indicates the best practice for the installation of an Inland AIS station on board of inland vessels.
- The word "may" indicates options or a possible solution of several.

These guidelines have been elaborated taking into account the requirements contained in ES-RIS 2025/1 and ES-TRIN 2025/1. They reflect the state of good practice and shall be applicable on the 1st of January 2026, when these editions of ES-RIS and ES-TRIN enter into force.

The rules defining the installation of Inland AIS station are defined in ES-TRIN. Please note that the term "Inland AIS station" that is used in this document should be considered as equivalent to "Inland AIS equipment" or "Inland AIS device" that can be found in other documents published by CESNI.

CONTACT

European Committee for drawing up Standards in the field of Inland Navigation (CESNI) Secretariat of the Central Commission for the Navigation of the Rhine (CCNR)

2 place de la République – CS10023

67082 Strasbourg cedex

France

Email: comite cesni@cesni.eu

Web: www.cesni.eu

All rights reserved © October 2025

© Wheel house, vessel A-Rosa Sena, courtesy Maritime Filming Group

ADN: European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways. ADN is an international agreement which was done at Geneva on 26 May 2000 on the occasion of a Diplomatic Conference held under the joint auspices of the United Nations Economic Commission for Europe (UNECE) and the Central Commission for the Navigation of the Rhine (CCNR). It entered into force on 29 February 2008.

TABLE OF CONTENTS

PRELIM	IINARY REMARKS	3
CONTA	СТ	3
TABLE (OF CONTENTS	5
	RECOMMENDATION FOR THE INSTALLATION OF AN INLAND AIS STATION ON BOARD OF VESSELS	7
1.	General	7
2.	Installation of the Inland AIS station	
2.1	Installation of a second Inland AIS station	8
3.	Installation of the MKD (Minimum Keyboard and Display)	9
4.	Antenna installation	9
4.1	VHF Antenna for the Inland AIS station	9
4.2	GNSS Antenna	10
4.3	Antenna cabling	11
4.4	Shared VHF antenna between Inland AIS station and VHF-radiotelephone	11
4.5	Combined VHF/GNSS antenna	11
4.6	Interference from low-power energy sources	11
5.	Additional requirements for the installation of Inland AIS station on ADN vessels	12
6.	Transmission settings	12
7.	Connection of blue panel	12
8.	Connection to an Inland ECDIS device	12
9.	Connection to a radar device	12
10.	Connection of external sensors (Position, Heading, Rate of Turn)	
11.	Power supply	
12.	Configuration of the Inland AIS station	
12.1	Configuration of the second Inland AIS station	
12.2	Missing unique European vessel identification number	14
12.3	Alerte settings	15
12.4	Special aspects	15
13.	Quality of sensor input	16
14.	Testing of the Inland AIS station	16
14.1	Test of received data	17
14.2	Test of transmitted data	17
PART II	INSTALLATION TECHNICAL REPORT ON INLAND AIS STATION	19
PART III	I INLAND VESSEL AND CONVOY TYPES	25
NOTES.		29

PART I

RECOMMENDATION FOR THE INSTALLATION OF AN INLAND AIS STATION ON BOARD OF INLAND VESSELS

1. General

This document is meant as a guide for installation firms when installing Inland AIS stations on board of inland vessels. Its purpose is to guide through the installation, configuration and testing of the Inland AIS station to ensure a correct setup.

The rules defining the installation of Inland AIS station are defined in the "European Standard laying down Technical Requirements for Inland Navigation" (ES-TRIN) Annex 5 Section IV "Minimum requirements, requirements for installation and performance tests for Inland AIS equipment in inland navigation". These rules are legally binding.

These "Guidelines on the Installation of the Inland Automatic Identification System" reflect the state of good practice and are meant to supplement the ES-TRIN minimum rules as are the installation manuals of the manufacturer of the Inland AIS station. They reflect the state of good practice and while not strictly legally binding, failure to follow the good practice may result in incorrect operation of the Inland AIS station or cause damages.

In case local police regulations differ from these guidelines, they take precedence. Otherwise, these local police regulations may complement, clarify or reinforce these guidelines. In any case, local police regulations must be strictly followed.

As defined in ES-TRIN, already installed Inland AIS stations conforming to Edition 1.0, 1.1 or 2.0 of the Inland AIS Test standard can still be used as long as the stations are working properly, possibly after repairs. Inland AIS stations conforming to Edition 2021/3.0 of the Test Standard for Inland AIS, ES-RIS 2021/1 or ES-RIS 2023/1 may be installed and used.

New installations or replacements of existing Inland AIS station shall conform to ES-TRIN, taking into account the transitional provisions.

2. Installation of the Inland AIS station

The following actions should be taken during installation:

- install the Inland AIS station on board, according to the installation manual provided by the manufacturer
- configure the Inland AIS station as per the installation manual,

- carry out testing of the Inland AIS station for correct operation and settings,
- document all settings in the "Report about installation and operation of the Inland AIS station", (attached to these guidelines in Part II),
- instruct the boatmaster in editing the static and voyage related data, and how to handle alerts of the Inland AIS station,
- fill in the Inland AIS equipment part of the "Installation and performance certificate for navigational radar installations, rate-of-turn indicators, for Inland AIS equipment and for tachographs in inland navigation" provided in section VI of Annex 5 of the ES-TRIN,
- hand over to the boatmaster / vessel owner the following documents:
 - The certificate as provided in section VI of Annex 5 of the ES-TRIN, which must be permanently retained on board as stipulated in ES-TRIN, Annex 5 section IV, Article 2.
 - The user instructions, which must be permanently retained on board as stipulated in ES-TRIN, Annex 5 section IV, Article 2.
 - The "Report about installation and operation of the Inland AIS station" to keep it on board (the specialist firm should also keep it in its records).

As stipulated in ES-TRIN, Annex 5 section IV, Article 2 (2): "The Inland AIS equipment shall be installed at an appropriate location in such way that

- a) it does not disturb the operation of other navigation equipment such as navigational radar installations or radiotelephone installations and
- b) conversely other navigation equipment does not disturb the correct operation of the Inland AIS equipment."

When choosing the location for installation of the Inland AIS station the necessary measures to keep the Inland AIS station within the specified temperature ranges (e.g. ventilation) should be taken.

It should be checked that the latest type approved firmware of the manufacturer is installed in the Inland AIS station.

It is proposed that for any installation the approved specialised firm should complete and sign the installation report attached to these guidelines in Part II, additionally to the report required in ESTRIN. The police regulations in force in the Member States must be followed regarding documents to be kept on board and to be submitted to the national competent authority.

2.1 Installation of a second Inland AIS station

If a second Inland AIS station is installed for redundancy reasons, it shall be ensured that both are not transmitting at the same time. This requirement is set by police regulations like the Rhine police regulation (RPNR, article 4.07 Nr2)

Both Inland AIS stations shall have a corresponding configuration (ES-TRIN, Annex 5 section IV, Article 2 (12)). If two GNSS-Antennas are used, then this shall be reflected in the configuration, i.e. the ABCD-values (see Chapter 11.4.1).

The installation report should be filled for each Inland AIS station separately.

3. Installation of the MKD (Minimum Keyboard and Display)

As stipulated in Article 2 (3) of the Annex 5, section IV of the ES-TRIN:

"The MKD (Minimum Keyboard Display) shall be accessible to the helmsman. The MKD Information shall be located within the helmsman's direct field of view. Other devices used for navigational purposes may however take priority as regards their direct visibility. It shall be possible to establish visually whether the equipment is operating. All warning indicator lights shall remain visible after installation."

In this context, the above-mentioned requirements apply to the MKD whether it is internal or external.

The MKD of an Inland AIS station can be replaced by a MKD functionality of another equipment, such as an Inland ECDIS. In this case, the MKD functionality shall be type approved according to ES-RIS Part VI.

4. Antenna installation

Only GNSS antennas which are part of the type approval certificate of the Inland AIS station shall be installed.

Other antennas need a declaration of conformity to the type approval certificate, delivered by the manufacturer of the type approved Inland AIS station.

4.1 VHF Antenna for the Inland AIS station

ES-TRIN Annex 5 section IV, Article 2 (5) states that "Inland AIS equipment antennas shall be installed and properly connected to the equipment, following the manufacturer's instructions, so as to ensure that this equipment operates reliably under all normal conditions of use." The above requirement is met if the following good practices are implemented.

The above-mentioned article also leads to the following requirements::

- The AIS VHF antenna shall be installed in such a way that the potential interference with other high-power energy sources, such as navigational radar installation and other VHF antennas, is as low as technically and physically possible. Usually this means a maximum distance to other VHF antennas and/or different heights since most of these systems are intended to radiate horizontally.
- Interferences to other on-board equipment, like the vessel's VHF radiotelephone, shall be avoided; attention should be paid to the location and installation of the various antennas, in order to support the antenna characteristics in the best possible way.

Furthermore, to operate reliably, the VHF antenna shall be placed in a vertical position, but it should be possible to lower the antenna temporarily for passing under bridges and other objects with a reduced height.

AIS VHF antenna shall have an omni-directional characteristic and a vertical polarization. Special attention should be paid to the installation on antenna masts which can be tilted.

The AIS VHF antenna should be placed in an elevated position, as free standing as possible, with maximum horizontal distance from objects made of conductive materials. The antenna should not be installed close to any large vertical obstruction. The AIS VHF antenna should have a visible horizon of 360 degrees.

4.1.1 AIS VHF antenna for second Inland AIS station

In case two Inland AIS stations are installed each Inland AIS station shall use its own VHF antenna installation.

Indeed, ES-TRIN, Annex 5, Section IV, Article 2, point 5 stipulates that "Every Inland AIS equipment shall be connected to its own VHF antenna. Sharing the cables of VHF antennas for radiotelephone installations and Inland AIS equipment is not allowed".

4.2 GNSS Antenna

The internal GNSS sensor must be connected to a GNSS antenna which is listed in the Inland AIS type approval or declared as equivalent by the manufacturer, even if the Inland AIS equipment is connected to an external GNSS position sensor.

The GNSS antenna should be installed where it has a clear view to the sky, so that it will access the horizon freely over 360 degrees, with a vertical observation of 5 degrees to 90 degrees above the horizon.

The GNSS antenna should be installed with maximum horizontal distance from high-power transmitters (e.g. Radar antenna), and out of their transmitting beam.

4.2.1 GNSS antenna for second Inland AIS

In case two Inland AIS are installed, it is strongly recommended that both Inland AIS have their individual GNSS antenna.

Alternatively, an active powered GNSS antenna splitter or external power supply may be used to use a single GNSS antenna for two Inland AIS stations. In that case this makes the GNSS antenna a single point of failure².

If the GNSS antenna distributor does not have an active power supply, only one of the two internal AIS stations will supply power to the GNSS antenna. If this internal AIS station fails, the GNSS antenna will no longer be powered and will stop sending a signal to the other internal AIS station.

Any antenna splitter should have the lowest loss and highest protection of interference.

² In order to have the same Inland AIS settings, both Inland AIS stations need the same reference point (i.e. GNSS antenna location)

4.3 Antenna cabling

The recommendation of the manufacturer shall be considered and appropriate cable- and connector types are used for the VHF antenna and the GNSS antenna working under the environmental conditions of inland navigation (ES-TRIN Annex 5 section IV, Article 2 (5)).

The type of coaxial cable used should be the best cable available to minimize the cross-talk from and to other cables/devices.

The coaxial cables between the antennas and the Inland AIS should be routed as short as possible, avoiding sources of electromagnetic interference in order to minimize attenuation of the signal. Coaxial cables should be installed in separate signal cable channels/tubes preferably, and if possible more than 10 cm away from any power supply cables. Crossing of cables should take place at right angles (90 degrees). The cable should not be installed close to high-power lines, such as radar or radio-transmitter lines. Coaxial down-leads should be used for VHF antennas, and the coaxial shield should be connected to the ground at one end.

All connectors should have multiple layers/rings of protection for interference.

All outdoor connectors on the coaxial cables should be fitted with preventive isolation, such as shrink-tubing/stocking with silicone to protect the antenna cable against water penetration.

4.4 Shared VHF antenna between Inland AIS station and VHF-radiotelephone

An Inland AIS station needs a VHF antenna of its own. Indeed, as stipulated in ES-TRIN Annex 5 section IV, Article 2 (5) "Sharing the cables of VHF antennas for radiotelephone installations and Inland AIS equipment is not allowed."

4.5 Combined VHF/GNSS antenna

A combined VHF/GNSS antenna for Inland AIS station is permitted. The combined use of the cabling for Inland AIS VHF Antenna and Inland AIS GNSS Antenna is permitted. Only antennas which are in the inland AIS station's type approval certificate or are approved by the Inland AIS station manufacturer shall be used (see paragraph "4 - Antenna installation" above).

4.6 Interference from low-power energy sources

Low-power energy sources such as LED (navigation) lights, electrical household equipment on the wheelhouse should be checked for possible interference with the Inland AIS station.

5. Additional requirements for the installation of Inland AIS station on ADN vessels

For vessels carrying dangerous goods additional requirements apply according to the European Agreement concerning the International Carriage of Dangerous Goods by Inland Waterways (ADN).

For dry cargo vessels, no part of an aerial for AIS station, no lightning conductor and no wire cable shall be situated above the holds. (ADN 7.1.3.70)

For tankers, no part of an Inland AIS antenna shall be situated within 2 m from the cargo area. (ADN, 9.3.1.52(d), 9.3.2.52(d), 9.3.3.52(d))

6. Transmission settings

The AIS station is meant to run autonomously on its default transmission parameters, and they may only be changed if required by police regulations in force in the Member States.

7. Connection of blue panel

The blue panel information shall correspond to the real state of the blue sign on the vessel. The status of the blue panel shall only be sent if the connection to such an equipment ensures that the real state can be determined at all times. It is recommended to use the feedback signal from blue sign.

The status "not available" shall be sent if the blue panel is not connected to the Inland AIS station (ESTRIN Annex 5 section IV, Article 2 (7)).

8. Connection to an Inland ECDIS device

It is recommended to connect the Inland AIS station to an Inland ECDIS to use the Inland AIS station derived information for on board information or navigation support. This connection should be wired for Inland ECDIS in information mode and shall be wired for Inland ECDIS in Navigation mode (ES-RIS Part I).

In some areas the connection of an Inland ECDIS may be required by the police regulations in force in the Member States.

9. Connection to a radar device

The inland AIS station may be connected to the navigational radar equipment, if the navigational radar supports the visualisation of AIS symbols and information and if the navigational radar makes use of the heading information from a connected GNSS compass (which must be in compliance with ES-TRIN annex 5, Section III, Article 1, Number 3).

10. Connection of external sensors (Position, Heading, Rate of Turn)

The Inland AIS station has interfaces (configurable as IEC 61162-1 or 61162-2) for position, speed over ground (SOG), heading (HDG) and rate of turn (ROT) sensors.

According to Article 2 (6) of Annex 5 Section IV of the ES-TRIN, only type approved sensors shall be connected to the Inland AIS. In the absence of suitable inland navigation standards, the external sensors connected to the Inland AIS shall be type approved in accordance with the following appropriate maritime standards:

Company	Minimum requirements in accordance with				
Sensor	Standard (IMO)	ISO/IEC Standard			
GPS	MSC.112(73) ³	IEC 61108-1 : 2003			
DGPS/DGLONASS	MSC.114(73) ⁴	IEC 61108-4 : 2004			
Galileo	MSC.233(82) ⁵	IEC 61108-3 : 2010			
Heading/GPS Compass	MSC.116(73) ⁶	ISO 22090-3 : 2014 Part 3: GNSS principles			

Rate-of-Turn indicators connected to the Inland AIS station shall comply to the requirements defined in ES-TRIN Annex 5 Section II.

11. Power supply

According to ES-TRIN Article 10.02 (1) and (2), and Annex 5, Section IV, Article 2(4):

"Where craft are fitted with an electrical installation, that installation shall have at least two power sources in such a way that where one power source fails the remaining source is able to supply the consumer equipment needed for the safe operation for at least 30 minutes.

Adequate sizing of the power supply shall be demonstrated by means of a power budget calculation. An appropriate utilisation factor may be taken into account."

MSC.112(73) adopted on 1 December 2000- Revised Performance Standards for Shipborne Global Positioning System (GPS) Receiver Equipment.

MSC.114(73) adopted on 1 December 2000 - Revised Performance Standards for Shipborne DGPS and DGLONASS Maritime Radio Beacon Receiver Equipment.

⁵ MSC.233(82) adopted on 5 December 2006 - Performance Standards for Shipborne Galileo Receiver Equipment.

⁶ MSC.116(73) adopted on 1 December 2000 - Performance Standards for marine transmitting heading devices (THDs).

ES-TRIN Annex 5, Section IV, Article 2 (3) and (4) stipulates for the AIS station:

"It shall be possible to establish visually whether [the AIS station] is operating."

And

"The equipment shall be connected directly to a power supply system in accordance with article 10.02. The equipment shall feature a power circuit with its own circuit-breakerhaving regard to article 10.12(2)(a) and be capable of being supplied with power at all times" (for example in case of loading and discharging of cargo, when some electronic devices have to be switched off).

In order to prevent damage to the Inland AIS station and to ensure a stable reporting behaviour, special attention should be paid to the stability of the power supply. Appropriate measures (e.g. DC-DC converter) should be taken if needed for the correct operation of the Inland AIS station.

12. Configuration of the Inland AIS station

The minimum mandatory data set transmitted by the Inland AIS station is subject to the police regulation in force in the member states.

The police regulation in force in the member states usually specify that data transferred by Inland AIS stations shall be permanently valid and correct, having the following consequences:

- During installation of the Inland AIS station the data of the vessel shall be entered properly. This includes the password protected static data like MMSI, ENI, call sign, name of the vessel etc. The full list of password-protected static data is defined in ES-RIS Part II.
- User changeable semi-static data, should be configured reflecting the status at the time of the installation. The user shall keep them up to date (ES-RIS Part II Article 4.01).

12.1 Configuration of the second Inland AIS station

It should be ensured, that the active Inland AIS station always broadcasts correct Inland AIS data. This can be done either manually using the MKD or by a connected Inland ECDIS device (if available). The specialised firm should train the user how to do this properly.

12.2 Missing unique European vessel identification number

In case a pleasure craft does not have an ENI number the data field shall be set to "00000000" (ENI not assigned) as stipulated in Article 3.05 of Part II of the ES-RIS,

For maritime vessels having an IMO number instead of an ENI number, the IMO number shall be set in the Inland AIS station and the ENI field shall be set to "00000000" (ENI not assigned) as stipulated in ES-RIS Part II.

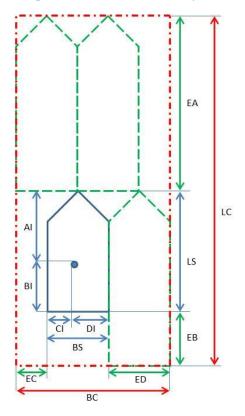
12.3 Alerte settings

Malfunctions and irregularities detected by the inland AIS station are indicated by alerts as defined in IEC 62923-1 ed. 1 : 2018 (Bridge alert management), formerly named alarms.

Alerts now fall in

- 4 priorities (Emergency Alarm Alarm Warning Caution) and
- 3 Categories (A B C)

Inland AIS stations only generate alerts of the 2 lowest priorities Warning and Caution and of Category B.


Alerts may be disabled in the configuration of an inland AIS station.

It is highly recommended that only alerts are disabled that are meaningsless. Eg "Missing ROT" when there is no ROT-sensor connected. All other alerts (eg. "Lost ext EPFS" when there should be an external Position sensor connected) need to be remedied and the root cause eliminated.

12.4 Special aspects

Special attention should be paid while configuring following data since those data appear on both places, in the inland specific data set as well as in the common maritime/inland data set. The correct conversion between both data sets should be checked.

12.4.1 Length and beam of a convoy or a vessel

For backward compatibility with previously installed Inland AIS station (type approved based on Edition 1.0 or 1.1 of the Inland AIS test standard):

The data overall length and beam of the convoy or of a single vessel shall match the length and beam derived from the reference point of the GNSS antenna (A, B, C, D values). When converting from decimetre (dm) to meter (m), the values shall always be rounded upwards, as defined in ES-RIS 2025/1 Annex 14.

For Inland AIS station type approved to Edition 2.0 or higher:

The dimensions of the own vessel (BI and LS, CI and BS) which are password protected, shall be set correctly during the installation and shall not be changed by the user (ES-RIS 2025/1 Annex 14).

The parameters of the convoy extension (EA, EB, EC and ED) can be entered/changed by the user.

12.4.2 Type of convoy / type of vessel

If the police regulation in force in the member states requires it, the type of convoy / type of vessel code shall be set according to Annex 10: "Inland vessel and convoy types" of the ES-RIS 2025/1. The conversion from the Inland vessel and convoy type to the IMO vessel type is also provided in this annex.

The Annex 10 is attached to this guideline for quick reference only, it shall be verified if its content is still enforced before using it.

12.4.3 Vessel's draught

The draught of the convoy or the vessel should be provided as decimetre value (dm) for the common maritime / inland setting and as centimetre value (cm) for the specific inland setting.

When converting from centimetre (cm) to decimetre (dm) the value shall always be rounded upwards, as defined in ES-RIS,

13. Quality of sensor input

If data from external sensors for geo-spatial positioning or determining the heading are used by an Inland AIS equipment, these sensors shall be type-approved in accordance with the following maritime Standards (ES-TRIN Section III Article 1 (3)):

Camana	Minimum requirements in accordance with				
Sensor	Standard (IMO)	ISO/IEC Standard			
GPS	MSC.112(73) ⁷	IEC 61108-1 : 2003			
DGPS/DGLONASS	MSC.114(73) ⁸	IEC 61108-4 : 2004			
Galileo	MSC.233(82) ⁹	IEC 61108-3 : 2010			
Heading/GPS Compass	MSC.116(73) ¹⁰	ISO 22090-3 : 2014 Part 3: GNSS principles			

14. Testing of the Inland AIS station

After completion of the installation and configuration of the Inland AIS station a functional test should be performed to ensure correct operation and settings. This applies also when the unit was fitted with other or new firmware.

The functional test should be done under operational conditions, i.e. with activated radar installation (when available) and VHF radio.

MSC.112(73) adopted on 1 December 2000- Revised Performance Standards for Shipborne Global Positioning System (GPS) Receiver Equipment.

MSC.114(73) adopted on 1 December 2000 - Revised Performance Standards for Shipborne DGPS and DGLONASS Maritime Radio Beacon Receiver Equipment.

⁹ MSC.233(82) adopted on 5 December 2006 - Performance Standards for Shipborne Galileo Receiver Equipment.

¹⁰ MSC.116(73) adopted on 1 December 2000 - Performance Standards for marine transmitting heading devices (THDs).

14.1 Test of received data

Data received from another Inland AIS station should be verified using the internal or external MKD and, if available, by any additional external application (e.g. Inland ECDIS) on board.

During this test the navigation lights and other equipment with low-power energy sources should be switched on and off in order to determine if the navigation lights or other equipment have a detrimental effect on the reception. If so it should be considered to either relocate the navigation lights or other impairing equipment or to relocate the AIS VHF antenna.

14.2 Test of transmitted data

The automatic transmission of the installed inland AIS station should be observed and verified. For this purpose, the built-in communication test could be used. The data transmitted could be verified onboard another vessel or using a portable test equipment. Authorities may offer a verification service of the transmitted data.

The following items should be verified (see "Report about installation of the Inland AIS station" - Part II):

- Transmission of correct static data,
- Transmission of correct voyage related data,
- Transmission of correct dynamic data,
- Suitable range for the current location.

PART II INSTALLATION TECHNICAL REPORT ON INLAND AIS STATION

The report below does not replace the Installation and performance certificate for Inland AIS station (or "AIS equipment") defined in Annex 5, section VI of the ES-TRIN.

If there is more than one Inland AIS station installed the following tables should be filled in each Inland AIS station. If the Inland AIS station is an addition to an already installed Inland AIS station, the information of the installed Inland AIS station should be filled in also.

INSTALLATION TECHNICAL REPORT ON INLAND AIS STATION

	VESSEL STATIC						
Name of the Vessel:			Unique Europea Identification No				
Maritime Mobile Service Identity (MMSI):			Call Sign:				
Height over Keel:			IMO number (၀ု	otional):			
Inland Ship/Convoy type (ERI Code)			IMO Ship Type (optional):			
		•					
	VESS	EL OWN	R				
Vessel Owner:		Address :					
Contact Person:							
Phone:							
Email:							
	AIS STATION INFORMA	TION 🗆 p	orimary 🗆 se	econdary			
Manufacturer / Model		Certificate	Number				
Serial Number		Firmware	Version				

	VESSEL	DIMENSIONS	
Internal GPS antenna position (in simplified input mode)		m [x.x m]: C [x.x m]: ision)	Beam C
External GPS antenna position (in simplified input mode)		m [x.x m]: C [x.x m]: ision)	Length
Convoy (if applicable)		rn [x.x m]: rd [x.x m]: ision)	Stern Bow Starboard
Estimated Cable length to GPS antenna in m: Estimated Cable leng			HF antenna in m:
GPS antenna (make & type):		GPS antenna (make & type):	

INLAND VOYAGE DATA						
Draught [x.xx m] Navigational Status						
Air Draught [x.xx m]		Blue Cones (Inland AIS)				
Persons on Board	Crew:	Personnel:	Passengers:			
The user has been informed on how to enter and maintain the above configured semi static and voyage related data as well as other optional						

The user has been informed on how to enter and maintain the above configured semi static and voyage related data as well as other optional information supported by the Inland AIS station.

PERIP	PERIPHERY AND COMMUNICATION – (PLEASE LIST MANUFACTURER AND TYPE)						
Sensor connected	Type of connected Equipment	Used NMEA Talker/ Sentences	Baudrate				
Sensor 1							
Sensor 2							
Sensor 3							
ECDIS							
Pilot Port							
Long Range							
RS232							
Alarm relay							
Blue Sign							
Quality of sensor input	Speed: ☐ high ☐ low	Course: ☐ high ☐ low	Heading: □ high □	low			
Power Supply of the AIS device	e (and Emergency Power source)		Supply Voltage	V			

Alert ID	Alert Text (BAM)	Description Text (BAM)	Active	Disabled	Alert ID	Alert Text (BAM)	Description Text (BAM)	Active	Disabled
3003	Lost ext EPFS	Check external position sensor			3113	Sync in fallback	Check AIS for UTC time synchronization		
3008	Transceiver fail	Not transmitting check AIS			3116	Impaired radio	Reduced coverage (antenna VSWR)		
3008	Transceiver fail	Not receiving check			3116	Impaired radio	Ch1 inoperative check AIS		
3009	MKD Lost	Cannot Display safety related messages			3116	Impaired radio	Ch2 inoperative check AIS		
3013	Doubtful GNSS	Int/Ext GNSS position mismatch			3116	Impaired radio	DSC inoperative		
3013	Doubtful Heading	Difference with COG exceeds limit			3119	Missing SOG	Not transmitting SOG		
3015	Lost position	Own ship position not transmitted			3119	Missing COG	Not transmitting COG		
3019	Wrong NavStatus	Check NavStatus setting			3119	Missing Heading	9		
3062	General fault	Check AIS equipment			3119	Missing Not transmitting ROT Rate of Turn			
3108	Locating device	Check AIS targets			10072	Tx disabled	AIS transmitting externally disabled		

Note: In case of deactivation of alerts in the Inland AIS station.

- Active alerts are alerts that were in condition "alert" before they've been manually deactivated
- Disabled alerts are deactivated alerts, regardless of their alert condition (e.g. if no ext. EPFS is installed)

	OPERATIONAL TEST						
Verification by MKD of own vessel's da	ta 🗆 OK	□ NOK	Position/Time:	□ ок	□ NОК		
Verification by MKD of other vessel's d	ata 🗆 OK	□ NOK	ECDIS connection:	□ ок	□ NОК	☐ not installed	
Test of transmitted data	□ ок	□ NOK	Blue sign:	□ ок	□ NОК	☐ not installed	
Communication test (range in km)			Active Alerts:	□ №	☐ YES		
	INS	STALLATION A	ND TRAINING DETA	AILS			
Vessel Location (Port/country):			Date:				
Name(s) of trained crew:							
Trained Topics:	Input/Output	☐ LEDs ☐ System	n Status 🗆 Static Data 🗆	Voyage D	ata 🗆 N	lav Status Alerts	
Remarks:							
Signature of Specialised fi	Signature of Specialised firm, Date and Location			re of Cus	tomer, D	Pate and Location	

This attachment if for quick reference. It is the Annex 10 of the ES-RIS 2025/1. Before using it, it shall be verified if it still applies or if some new version has to be taken into account.

The CESNI website is accessible here: https://cesni.eu

PART III INLAND VESSEL AND CONVOY TYPES

Source: Annex 10 o ES-RIS

This correspondence table is based on an excerpt of the 'Codes for Types of Means of Transport' according to UNECE Recommendation 28 and the maritime ship types as defined in Recommendation ITU-R M.1371 'Technical characteristics for a universal ship borne automatic identification system using time division multiple access in the VHF maritime mobile band'.

	Inland vessel and convoy type	Maritime	ship type
code	vessel name	1 st digit	2 nd digit
8000	Vessel, type unknown	9	9
8010	Motor freighter	7	9
8020	Motor tanker	8	9
8021	Motor tanker, liquid cargo, type N	8	0
8022	Motor tanker, liquid cargo, type C	8	0
8023	Motor tanker, dry cargo as if liquid (e.g. cement)	8	9
8030	Container vessel	7	9
8040	Gas tanker	8	0
8050	Motor freighter, tug	7	9
8060	Motor tanker, tug	8	9
8070	Motor freighter with one or more vessels alongside	7	9
8080	Motor freighter with tanker	8	9
8090	Motor freighter pushing one or more freighters	7	9
8100	Motor freighter pushing at least one tank-vessel	8	9
8110	Tug, freighter	7	9
8120	Tug, tanker	8	9
8130	Tug, freighter, coupled	3	1
8140	Tug, freighter/tanker, coupled	3	1

	Inland vessel and convoy type	Maritime	ship type
code	vessel name	1 st digit	2 nd digit
8150	Freightbarge	9	9
8160	Tankbarge	9	9
8161	Tankbarge, liquid cargo, type N	9	0
8162	Tankbarge, liquid cargo, type C	9	0
8163	Tankbarge, dry cargo as if liquid (e.g. cement)	9	9
8170	Freightbarge with containers	8	9
8180	Tankbarge, gas	9	0
8210	Pushtow, one cargo barge	7	9
8220	Pushtow, two cargo barges	7	9
8230	Pushtow, three cargo barges	7	9
8240	Pushtow, four cargo barges	7	9
8250	Pushtow, five cargo barges	7	9
8260	Pushtow, six cargo barges	7	9
8270	Pushtow, seven cargo barges	7	9
8280	Pushtow, eigth cargo barges	7	9
8290	Pushtow, nine or more barges	7	9
8310	Pushtow, one tank/gas barge	8	0
8320	Pushtow, two barges at least one tanker or gas barge	8	0
8330	Pushtow, three barges at least one tanker or gas barge	8	0
8340	Pushtow, four barges at least one tanker or gas barge	8	0
8350	Pushtow, five barges at least one tanker or gas barge	8	0
8360	Pushtow, six barges at least one tanker or gas barge	8	0
8370	Pushtow, seven barges at least one tanker or gas barge	8	0
8380	Pushtow, eight barges at least one tanker or gas barge	8	0
8390	Pushtow, nine or more barges at least one tanker or gas barge	8	0
8400	Tug, single	5	2
8410	Tug, one or more tows	3	1

	Inland vessel and convoy type	Maritime	ship type
code	vessel name	1 st digit	2 nd digit
8420	Tug, assisting a vessel or linked combination	3	1
8430	Pushboat, single	9	9
8440	Passenger vessel, ferry, red cross vessel, cruise vessel	6	9
8441	Ferry	6	9
8442	Red cross vessel	5	8
8443	Cruise vessel	6	9
8444	Passenger vessel without accommodation	6	9
8445	Day-trip high speed vessel	6	9
8446	Day-trip hydrofoil vessel	6	9
8447	Sailing cruise vessel	6	9
8448	Sailing passenger vessel without accommodation	6	9
8450	Service vessel, police patrol, port service	9	9
8451	Service vessel	9	9
8452	Police patrol vessel	5	5
8453	Port service vessel	9	9
8454	Navigation surveillance vessel	9	9
8460	Vessel, work maintenance craft, floating derrick, cable-vessel, buoy-vessel, dredge	3	3
8470	Object, towed, not otherwise specified	9	9
8480	Fishing boat	3	0
8490	Bunkervessel	9	9
8500	Barge, tanker, chemical	8	0
8510	Object, not otherwise specified	9	9
1500	General cargo Vessel maritime	7	9
1510	Unit carrier maritime	7	9
1520	Bulk carrier maritime	7	9
1530	Tanker	8	0
1540	Liquefied gas tanker	8	0
1850	Pleasure craft, longer than 20 metres	3	7
1900	Fast vessel	4	9
1910	Hydrofoil	4	9
1920	Catamaran fast	4	9

NOTES

